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A necessary and sufficient condition for the optimality of the upper layer time
is derived for one class of linear pursuit problems satisfying local convexity
conditions,

1. Let a linear pursuit problem in an n-dimensional Euclidean space R  be
described by the linear vector differential equation [1 —5]

dz/dt =Cz—u-+v (1.1)

(C is a constantnth - order square matrix, u = u () EP and v=v()E
Q are vector-valued functions, measurable for ¢ > 0 , called the players' contr-
ols, P C R and Q C R are convex compacta) and by the terminal set M = M
- We, where M, is a linear subspace of space R and W is a compact convex
set in a subspace L which is the orthogonal complement to Moin R . By . we
denote the operator of orthogonal projection onto L (we assume that v = dim L
> 2), by K the unit spherein L , by @ (f) the matrix ¢'Candby (a- b) thescalar
productof vectorsa & Randb & R. Let To besome fixed positive number. We assume
that Conditions 1 —3 in [3](whose notation, together with that in [4], we retain in
the present paper) are fulfilled for problem (1, 1); we require the fulfilment of Cond-
ition 1 only with respect to 7 €= (0, T's] = I, and of Condition 3 only with respect
to t &[0, Tol. By M, and M, we denote linear subspaces in Rand by p,
and ¢, , vectorsfrom R such that the linear manifolds M; -+ po and M, + qo
are carrier manifolds for P and @, respectively. Weset Po =P — po, and

Q; = Q — qo

Condition 4. There exist a linear homeomorphism A : M, — M, de-
pending analytically on r & I,, a linear homeomorphism II (r): M, —> L
and the functions f (r) and g (r) , analyticin r &(— =, 4 oo) and positive
on [,, such that

n(Nu = f () IFu* + po(r), = (v =g (I {F)Av* + ¢(r) (1.2)
a()=ad(), u*=u—po Py, V*=v—q &0
po(r)'_—“(r)po’ qo(r)=:rt(r)qo VuEP, UEQ, re lo

From relations (1, 2) it follows that the boundaries of sets Po C M; andQ, =
AQ, CC M, aresurfaces locally convexin M, , and, if ¢ & K, (where K, is
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Sufficient optimality condition for pursuit time 1101

the unit spherein M,) and p () and ¢ (§) are vectors maximizing
the expressions (- p), p & P,, and (q;-q), g € Qo, respectively, then vectors
p (y) and q () ate unique and

u(r, @ =p I @)+ po, v e)=A479({(r ¢) + g (L3
I'(r, o) =1*"e /| T*)e|, I*):L—-> M,
Vo= K, rel,
Here II* (r) is a linear homeomorphism depending analytically on r & I, adjoint
to II (r), 1i.e., giving the equality
@U@ y=d0*0zy), Vrel €L, yeM,
Let
w(r) =0 (NP 2.1 (NQ, B (1) =f (NP, % g (N
Then (see [7,8])
w, () =T (B () + A @), AF)=plr) =)

It is well known [9] that when Conditions 1 —4 are fulfilled the condition of total sweep
D) +eMQ=1NP, r&l, (1.4)

is sufficient for the global [4] optimality of time T (z) < T,, constructed in [5].
Condition 5 There exista v-dimensional linear subspace My C R,

a linear homeomorphism B : M43 — M, and a function k (r) analytic in r & (—

00, + ©0), such that the triple x = {f (r), g (r), % (r)} islinearly independent

on [, and such that

n(w=k@)0@WBw, Vi, v M;

2, Theorem 1. Let Conditions 1 —5 be fulfilled for problem (1, 1), Then
the total sweep condition is a necessary condition for the global optimality of time
T@E<T,

The proof of Theorem 1 is carried out in several stages and is based on Theorem 2
in [8].

3, We set

P(e, ¥)=(pp(@ —p®) q(p, ¥)=(9:9(9)—a))
ho, V) =g (o, V) /p (e, V), a=suph (e, )
(the sup istaken overall @, p & K,, ¢ #=1). In[8]it was shown that a point

@, and a local coordinate system § = (s%, . . ., s") in its neighborhood Og, C
K, with origin O at point @, exist such that
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(pch(§)=(p(327'°'1sv)7 (PEOQJM (p(0)=q)o (3.1
222(9 (0)) = apas(e (0)

93 ((5) = ((Pi (%) %(i](;&) y Pu(e@) = <(P{ (5)- ap (;gg‘)) >;

y Ly j=2,...,.

- 8 (s
9,(6) = 225

Also in [8] it was proved that the total sweep (1. 4) obtains if and only if
m(r)>1, m@)=1()/(ag), rel,

Assumption 1, There exist 0 << v << 71, {7, suchthat m (r) > 1,
re 0, tl,and m(r)<<1, re (1, 1,l.

Note 1. Because m (r) is analytic we can find T, & (T, T1), such that
m'(r)<<0, reTl = (r, 1,l.

It will be shown in Paragraphs 4 —6 that when Assumption 1 and the hypotheses of
Theorem 1 are fulfilled we can find a point 2, in space R , for which the time
T (z,) << T, isnot optimal,

4. Lemma 1, Let 8 & (v, Ty). Then for any sufficiently small v, < (0,
T), 8 4+ v, & 'y the determinant A = A;(0 -+ 7,) = 0 (here A,(f) is the
Wronskian for the system of functions f (t), g (£) and % (2)) and the function

R@) =7+ 1)g®0+ 1) —F0OF1)gt+ 1,
satisfies the following relations:
R(t)y>0, t<I0,8), RO =0 —R@® =N>0 4

By virtue of the analyticity of the functions occurring in triple », the first part
of the lemma follows [10] from the linear independence of these functions. The second
part follows from Assumption 1, Note 1 and the representation

R(t) = ag (0 + 1)g (t + t)(m (t + 1) — m (8 -+ 7,))

Corollary 1. For any sufficiently small v, > O there exist analytic fun-
ctions hy (2), ho(t) and H (t) = h4(t) each being a linear combinationof functions
f(t+ ), g+ To) and k(¢ -+ 7o), satisfying the conditions

; i [0, je=i—1 (4.2)
d]hi(ﬂ)/dﬂ:{1 ]].Ti_i; j=0,1,2i=1,2,3

To verify the corollary it is enough to note that by virtue of Lemma 1 we have a
linear system with determinant A £ 0 for finding the coefficients of each  linear
combination.
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Everywhere below we fix 0& (t, 1,) and the number 7, > 0 so small that
the conclusion of Lemma 1 is satisfied. We set

L(t)y=1(+ 1), D ¢ = LT®) /| (L t)*p]
M (t, ¢) = L)W (t, D (¢, ¢)), C (t)z = L7'(t)n (¢)z
Vies[0,0l=1, o= K,, z& R

Here L-Y(t): L — M, is the operator inverse to [ (t), thesign #  denotes
passage to the adjoint operator; as is well known, (L~'())* = (L*(t))~. Opera-
tor [ (t) is nonsingular for each ¢ & I, ; therefore, operator L*(t) is nonsingular
too and the family of surfaces M (¢, K,), ¢t & I, , is locally convex[5]. In connec-
tion with this there exists ¢, > ( such that (see Lemma 2 in {5])

(@M (t, @) — M (¢, ) > ca(p @ — V)
Vie(r, 0], o= K, vk,

We remark that the representation for M (Z, @) has been chosen so that the vector
@ is the outward normal to surface M (¢, K,) at point M (¢, ¢).
Note 2. Since

W (¢, 9) — n ()z) = (L*Op-LIOW @, ) — C (#)2) =
l (t’ (P)((P'M (t’ (P) —C (t) Z)’

¢ = L*@w /| L*twp | & Ky, L @) = | (L@ e

Vwwe K, ze R, te 1

function A (z, ) has the same sign and the same zeros as the function

n(z, t) chgri(r.l (p-M (¢, @) — C (t) 2) (4.3)

We denote Py (2, t) = L*(@) (z, t) /| L*(O)p (2, t) | (vector ¢ (z, t) was in-
troduced in [4])(*). Then, if ¢ (z, t) is the vector giving the minimum in (4, 3) and
if Az, t) =0, then @ (z, t) = ¥, (z, t).

Note 3, Let ¢y, = @ (0) be the vector from (3.1). By virtue of Corollary
1 and Conditions 4 and 5, a vector Zo & I? exists such that

C (tyzo = M (8, ¢1) b1 (?) “.L'Eﬂ-(g%wm(t) —}-a_zi/lgz’_(@hs(t)’ £>0 (4.4)

So that, with due regard to(4.2), M (¢, ¢1) — C(t)z0 = e (), |& (&) | < co* (8
— 1)?, 0<C £ B, where co* >> 0 issome fixed constant. Forany real a, b
and ¢ avector z¥(a, b, ¢) & R exists yielding the equality

*) Editor's Note, In the English edition this vector is introduced in Lemma 1 on p, 193,
PMM Vol. 37, No. 2, 1973,
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C (t)z*(a, b, ¢)= (aR (t) + bH (1))g1 + cH ()1, t>0 (4.5)
=00 @)Ky o O)=1raer 0Ky rel

Yr = 53—2M 6, ©® @0), Yo=D@®O, 1), N(r)=II*{)L*F)?

Here y; isa nonzero vector orthogonal to @1 (by expanding, if necessary,the local
coordinates we can assume that |y | = 1).

Let us clarify Note 3, The right handside of each of the equalities (4.4) and
(4.5) has the form

f (4 to)ue + g (¢t + vo)dvy + & (¢t + 7o)Bwy,
UQEM;{, UOEMQ, Wy EA’[:.;

Therefore, it is sufficient to take the vector z = ¢™C (uy + vp + wy) in  the
left hand side. Notice also that the mapping N (r) ¢ is analyticin r &= (0, 6],
¢ & K, sothat we can find ¢3 > 0 such that

IN (e — N @) |<cf0—r), rele, 8, o=k, (46
we set z(a, b, ¢) = 2o + 2%(a, b, ¢); 6(f) =6 — ¢. Wehave
4,17
7 (0)z (a, b, ¢) = W (B, %), ¥ (z(a, b, ¢), B) = (4.7
5. By 0<C0, <<, <... <0, <<B we denote all the zeros of function
H (f) in the half-open interval [0, ) andby 8, > v , 2 fixed number 0, &
(Bm, 8) socloseto O that

OO <4H <O O, 1< T30 <2

le®) | <@ @)<c/16, Viel =10, 0)C (0

(5.1)

We set

= P i R(t 0 (5.2)
E—tegl,%xem,(lC(t)zolJrlM(t'cv)l), Y i >

ay = 2Y-YE + 28 EAN?(c, Y™ + 4c;), 0y = 0 — 8o
80 = min {8 — 6, Y32 IN?, (4aoNc;")", cr?Y247EN"%}
ay = 2ao(N + Y) + (32EN)*(c,Y?)™ + 4e;

Lemma 2, Forany T & I® = (0, 0) we can find numbers @ = a (T)
=ay, b=5b(T), c=¢(T)=4E (6 — T)~? and a nonempty set Q (T)
whose closure is contained in interval (7', 8), such that:

A (z(a, b, o), )<0,t [0, TT=X; Az (e, b, ), <O, tE
(7, 6l;

b) if A(z(a, b, ¢),t) =0 and t &[0, 0), then t & Q (T), and vice

versa;
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) |aR (t) + bH () | < a0 — T | cH (t) | << 4, t < [T, oOl.

Proof, Weset

R 64E2H %
v = b (1) =— "7 — ey —dea O ) r =0 —DED s 7 (5.5
T* =max {0+ r)/2, 0 —agN (2] 6%+ )1} (5.4)

For any b < [b*, 0] we denote the vector z(a, b,¢), by z(3) , where a=a (T)
and ¢ =c¢ (T) are specified by Lemma 2, Then

Mz (), <0, t=X,be(b* 0] (5.5)

Indeed, using the orthogonality of ¢, and y; and relations(4,5) and(5.2), we
have (o () = sign H (¢))

nz{®), 1) < (O %Mo @) %) — C(2) 2 (5) = (0(2) %M (8 0(2)xy)—
C)z) —c|HWOISE—4E|H@|(O®—T12<0

for those t = X for which 4| H (1)1> (0 — T)%. By virtue of (5. 1) we have the
inclusion t «1[0,0,] forthose t=X forwhich 4| H®I<O®—T)2 , So
that, using (5.1) —(5.3) and the inequality 6 — T <{1, we obtain, as in [8],

n(z®), 0 < (@ - M o) —C(t)z) — (@R (1) + bH (1)) S E —
aY + | 0% | 02 (T) /4 <0

Inequality (5. 5) has been proved (see Note 2),
Let us show that

A(z(B),1)<0, t=[T* 6], t58, b=[b* 0] (5. 6)

Indeed, n(z(5), ) <le ()| —aR () +|b*|H () <0, t=[T* 0). Letusprove
the inequality
Az (), 1) >0 (5.7
Weset ny =n(z(b*), r); Iy = aR (r) + b* H (). By virtue of (5.1) —(5.3)
0> ¢y + Lo = ¢y — BAERHAr) 078(T) cg™t — 4e0°(r) H (1) > Ypey ~ (5-8)

Therefore, for the quantity ny = (- M (r, @) — M (r, @) + € (r) — Ly — cH (M)x1)s
where ¢ = ¢ (z (b¥), r), we have the estimate

na > o (r@ — §1) — 871eg (8 — 1) — (@:1y@y + oH (1) 1) >
¢a— 810y (B (r))""* — [(ca -+ Ly + HA ()"

Hence from (5. 8) we obtain
Ny > — Ly — 871y (8 (M) — AH2(r) ;1 >0

By virtue of Note 2, inequality (5.7) is proved.
Finally, let us show that

A@E@©0),)=A(z(20,¢), 1) <0, t=[0,0)
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In accord with (5, 8) it suffices to verify this only for ;< [T,0), Forsuch ¢ we
have

n(z(0),8) < (@M (6, @) — C (1) 20— aR () @) <& ()| — 2o R () <O

as required.

Let us complete the proof of Lemma 2, Let b (T) be the least upper bound of the
set of all b & [b*, O] for which the function A (z (b),#) vanishes at least at one
point of the interval e (T, T*). Then relations a) and b) of Lemma 2 are ful-
filled, while estimate c¢) follows from (5.1) —(5. 8)

la(MR@+b (D) H@OI<aR (1) +|6*H ()| < ay (9 — 1)
t= [T, 0)

6. Using Assumption 1 we complete the proof of Theorem 1, Let I'; —> 0 — O,
i —> o00. By z; we denote the point z{a(T;), b(T;), ¢ (T;))(see Lemma 2), by
I;(t) and c;(t) the functions a (T;)R (¢) + 6 (T,)H (t) and ¢ (T,)H (t) , by
Q; theset Q (T;). If £ & Q; , wedenote the vector T (¢, ¢ (z;, t)) by
@i, By virtue of Note 2, when ¢ & $2; we have

Ml(t) = M (t1 L) (t’ (Pii)) =C (t)zi = M (t, 0] (61 (Po)) + (6-1)
Lt)e:r + ci(t)x — & (2)

Multiplying (6. 1) scalarly by ¢, and using the local convexity of M (¢, @), we
obtain,
0 < cpr-@r — 0 (t, 9i)) << (0- M (2, @) — My(8)) = (6.2)
—1(t) + (91-(2)) = cks*(t)
Having made use of the inequality |afa|* —b|b|* 2 < [a— b «(a]

| 6])7Y, when t & Q; we have (by virtue of (6.2), (4.6), (5.1) and estimate c)
in Lemma 2)

lgo — e PN O || N (®) 0 (8 @) DTN 0)pr — (6.3
N @)1 + N (@)(pr — 0 (¢, 9:0) | << NiPlesb (1) +
N ok (812 < {Ni(es + No(2a1 / ¢3 + 1)}HO — T

Ny=sup | NI |, t I No=sup|N@|, t

Here || * || denotes the norms of the corresponding linear operators, Therefore, for
all sufficiently large i (forall i =1, 2, ...) if we discard a finite number of
terms)

¢, = CP(EU)EQQ)M N@®)o(, (p“)/IN(e)(D(t, (Pit)l = @ (5i1) &€ Oq.

where ©0;, and §;, are the local coordinates of the corresponding vectors. By
virtue of (6.3) a sequence ¢; = -+ 0, i — oo, exists such that for any i and all
t = Qi
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(5] <o, [0u]<<e (6.4)

From the Taylor expansion with a remainder term in Lagrange form follows

M@, o0® ¢@E) =M, (px)—i-z M (r, “’;S TN g o5 6.9
j=2
105 < els?

Here ¢, is the common constant for all r & [0,, 6] and all ¢ (5) & Og,. From
(6. 1) and (6, 5) follows

L) 91+ ¢ () 1 — e (0) = Z aM (4, ﬂ;fj; ¢ (0))) si, -+ 0 (|5 P (6.6)

7=2
fEQi

Multiplying (6. 6) scalarly by da (6, @ (0)) / ds*, we obtain
() M O + e (t) = X Mg () sh + A (0 1= Qi k=2,...,v (6D
j=2
| en (8) | << 87y (0 — t)'/' | Ari(t) | < ea | Sue P

—(1+Co+cz)< w)

- 0@, p(3)eM{, 08, 9
M @)= Mist, 90, Mgt 9(5) = (2 GREUM 000 0N) (6.0
kyj=2,...,%
Solving the equation system (6, 7) relative to su"‘, m=2...9 (the quadratic
form with matrix (6. 8) is positive definite, so that the matrix B, (f) invesse to

matrix M, (£) exists and is continuous in ¢ & [8,, 6]), we have (see(5.1); §,™
is the Kronecker symbol)

su™ V() = () (8™ B () Fen* (), tEQ (6.9)
[E™ @) ] = mk (£) m (&, t)‘< atej’ﬂ)e] kéalm(k’ t)f=98—0
i— 00

lem* ()] = ]éz Bk (£) e (t) | << BH (1) (0 — 1) < s (1) 8,

i (0 B (8) | < 2oy 50 P

[v;
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m(k, 1) = Mo 0)— Mo (8), 6 = (ex+ 1) (1 + sup S | Bk (9)))
1E (O, 0] m, F=2
8 =c (4E)y" O —T): -0, i—> o0
From relations (6, 9) it follows (cf, [8]) that for all sufficiently large i
su” = ()8 + @"(t), teE, m=2, ... (6.10)
| as™() | < 6 + 8;* + 2Tviec,e; — 0, i— oo

For the determination of the local coordinates ¢;;™ we have the relation
i = N (90 6, ¢ 5)) AN (Do (0, ¢ (i) | = (6.1
¢ Eu) +0: (), i
where, as in (6.3),

[0 (1) | < Nies(® — &) < i@} (ViesE)O — T)*0 — 1)

By virtue of (5.4) and (5. 6) we have
0 —t>0—T* =min{0 —ry, aN 2| 86:*|+ )™}

Taking into account the inequality

| 0% | << (0 — )7t (8agV + 4°E2N? + ¢,)

following from (5, 3), expanding (6.11) by Taylor's formula and arguing analogously
to(6.6) —(6.10), we obtain
0™ = (0, + B(), tEQ m=2,..., 9 (6.12)
[B:" ()| < Bi >0, i—o0

where all the B; depend neither on m, noron ¢ & ;.
Let us compute (cf. Sect. 2 in [8]) the quantity wi(t) = p (¢, ¢ (3, 2), 0, ¢ (2,
0)). By virtue of (1.3), (6.1), (4.7) and Note 2, forany t & Q; we have
nai(t) = @) [ 2@ (25, 8) | = F () @ir-p (D) — P (Po)) —
8 (@i q (9i) — ¢ (o))

Expanding the expression within the parentheses by Taylor's formula, we obtain

n, () = é‘f (t) Z Py (@) 0305 —

m, k=2
v

1 , . —
5 8 (t) Z 9 i (o) Gitmc‘ith +o(foul? t&W
m, k=2
where 0|8 ?) /[SP—0, [s]|—>0 | uniformly in ¢ & [0,, 0]. Substituting
the values for the local coordinates from (6. 12), we have ( see (3. 1), inclusion & &
[0,, 0] and Note 1)
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"2 tmi(8) = Yaog @)lm (8) — Lpssle (0) + 0 G, )< (6.13)
Yyog*lm (8) — ﬂ,Pza(‘P O +o( 1), te=f

where (see (6.12)) g*=mint&[0,,0]g () >0 andjo (i, t)| >0, i = oo,
uniformly in ¢ & ;. Therefore, p; (f) << 0 forany ¢ & Q;  for all sufficie-
ntly iarge { , By virtue of assertions a) and b) in Lemma 2 this signifies that all
the hypotheses of Theorem 2 in [8] have been fulfilled for point z; »  Theoreml
is proved in Assumption 1 is fulfilled,

7. Assumption 2. Thereexistt 0 < 7;<C T, suchthat m (r) <1
for O < r<<T1

To carry out the proof of Theorem 1 under the conditions of Assumption 2 it is
sufficient to set T = 0, to choose T, & (T, T1) suchthat m'(r) = (f (r) / (ag
() = Ofor r & I' = (v, 1,] (this is possible because the functions f (r) and g (r)
expand into power series in parameter 7 in a neighborhood of r = Q0 , to choose
8T and 7 > 0 so as to satisfy the conclusion of Corollary 1 and the relations
{4.2) and also such that the function

R(t) = (f (¢ + T)g (8 + 7o) — f (8 + To)g (¢ + W)
o =signm’ (s), s€T

satisfies (4.1), and to repeat verbatim the arguments in Sections 4 —6 up to formula
{6,13),

8, We now present an example showing that condition A in [2] in the general
case is not a necessary condition for the global optimality of the upper layer time

doyldi=23—u, dyldt=v [u|<l jv|<1 8.1)

where z;, 7, u and v are two-dimensional vectors, The terminal set M is the sub-
space {z:2,=0}. Here mz=z3 W, Q=h(@®Q,h()=t— /2,02
The time T (z) is the smallest positive root of the equation F (t, 2} = — |z + 5[
+(E—2r22=0.If T (2)<1i , theoptimality of T (z) follows from [2]. Let
us show that time 7T (z) € (1, 2) also is optimal although condition A may not hold
on the whole interval [0,2),

We suggest that for escape starting from point 2o, T (20} = T & (1,2), we set

5() = (To— M uE) + 0 — (To— NP, O<Ss<STo— 1
T =u(), 0ST,—s<sHt

where @, = ¢ (z) is given by the equality (cf. [4D % (To) Po = 210 + ToZ0 . Then
for the motion z (s), 0 < s <X Ty, 2z (0) = z5 , we have
s &

F s, s = | st st Ye= sy ar =\ ar+ @ =9t
0 0

(Ty— s)Sz‘; (rdr
0
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for all s e [0, To— 1]. Letusshow that T (z(s))= T¢ ~ ¢ is fulfilled for all such

s . We proceed by contradiction, Let 0<7T (z(s)) < Ty — s . By virtue of the
definition of Ty wehave 0<k = 9F (T, 20)/ 9t , and, if k=0, then n = §?
F (Ty, 20) / 02 < 0.Using the inequality %> 0 , by direct calculations we obtain

8 0 9y s‘
_MTSM>(TO_-S)(2—TO+S) §— qJO g”(r)dr
0
)

where equality to zero is possible only if ¥ = 0 and u (r) = ¢, almost everywhere
on [0, s]l. But in the latter case

0% (T'y —
__(7_(>_0L2_S’_i§s_»-=n+s(z+s—2To)<O

From what has been said it follows that the function p (t) = F (¢, 2 (s)) has at least
three zeros ( with regard to their multiplicities) on the interval (0,79 — s]if £+ 0
and four zeros if & = 0. In the latter case we obtain a contradiction that,since p(0)
< 0and p (— o) > 0,afourth-degree polynomial has five roots, However, if k 5= 0, then
p(t) >0 forall ¢> Ty — s sufficiently close to To— s;p(2) <V, whichyields
four roots on (7 — s, 2].  As before, we discover five roots on the negative semiaxis,
A contradiction,

Now let 7T (z (sp)) = 0, sp = (0, Tg— 1]. Without loss of generality we can take
it that s, is the smallest one of such instants, By what has been proved, T (z (s)) =
To—50<<s<sy, so that F (0, z(s0)) = 0; F(Ty — o, 2 {50)) = 05 F (¢, 2z (s59)) < O,

St To — 3. Since % (s) = 0, . F(t,z2(s)) = 8 (— | 23 (so) |24 (1 — ¢/ 2)%),
Hence
I 23 (so) 2= (1 — (Tp — $0)/2)?
F(t,z(s0) = Yt2 (To— 50— 1) 2~ t+ 2 —(To—50)) >0
0<Ct<CTy—so
A contradiction, The inequality T (z (s)) 2> To — 5, 0 Ty —s<<1 , follows from
[2].
Now let 8 > 0. Having chosen &> 0 sufficiently small and setting v (s) = o,

0 < s<<ev(s)=7(s—e),s>e , we guarantee avoidance of contact during time
T, — & (see[2] for thg proof).

9, A large class of pursuit problems satisfying Conditions 1 —5 of the present paper
(remember that Conditions 1 —3 are taken from [3]) have been presented in Sect. 5 of
[9]. Thus, for this class we have obtained a necessary and sufficient condition for the
global optimality of first absorption time.

The author thanks N. N, Krasovskii and E, F. Mishchenko for attention.
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