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A necessary and sufficient condition for the optimality of the upper layer time 
is derived for one class of linear pursuit problems satisfying local convexity 
conditions. 

1. Let a linear pursuit problem in an n-dimensional Euclidean space R be 
described by the linear vector differential equation [l-5] 

dz / dt = Cz - u -j- v ( 1.1) 

(C is a constant nth - order square matrix. u = u (t) EE P and v = v (t) E 
Q are vector-valued functions, measurable for t >, 0 , called the players’ contr- 

ols, P C R and Q C R are convex compacta) and by the terminal set M = Mo 

+ wo, where MO is a linear subspace of space R and WO is a compact convex 
set in a subspace L which is the orthogonal complement to ikfo in R . By n we 
denote the operator of orthogonal projection onto L (we assume that v = dim L 
> 2), by K the unit sphere in L , by @ (t) the matrix etcand by (a. b) thescalar 

product of vectors a E R and b E R. ?_et T 0 be some fixed positivenumber. We assume 

that Conditions 1 -3 in [3] (whose notation, together with that in [4], we retain in 
the present paper) are fulfilled for problem (1.1); we require the fulfilment of Cond- 
ition 1 only with respect to r E (0, ToI = IO and of Condition 3 only with respect 
to t E 10, Tol. By M, and M2 we denote linear subspaees in R and by p o 

and qo s vectors from R such that the linear manifolds MI f po and M, + qo 
are carrier manifolds for P and Q , respectively. We set PO = P -pa and 

Q1 = Q - 40. 

Condition 4. There exist a linear homeomorphism A : M2 --f Ml de- 

pending analytically on r e 10 , a linear homeomorphism I1 (r): Ml -+ L 
and the functions f (r) and g (r) , analytic in r E (- DC, + m) and positive 
on IO, such that 

rr (r.)u = f (r) n(r)n* + PO(r), n (r)v - g (r) n (r)Av* + qO(r) (1. 2) 

n (r) = n@(r), u* = u - po E PO, v* = v - qo E Q1 
p,(r) = n(r->po, qo(r) = fi(r)qo b' u E P, u E Q, FE 10 

From relations (1.2) it follows that the boundaries of sets Pa C Mr and Qb = 
AQ, c MI aresurfacas locally convex in Ml , and, if $ E K, (where K1 is 
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Sufficient optimality condition for pursuit time 1101 

the unit sphere in M, ) and P (44 and 4 (9) are vectors maximizing 
the expressions (q.p), p =P,,, and (q-q), q E Qo, respectively, then vectors 
p (9) and q (II) are unique and 

24 (6 9) z P (r (6 cp)) + h u (r, Cp) = A-% (r (F, Cp)) + Qo (1.3) 

I? (r, rp) f rr”(r)cp / f n*(r)9 1, n*(r) : L--t Ml 
V~I E K, r E IO 

Here n* (r) is a linear homeomorphism depending analytically on r e 1s adjoint 
to II (r), i.e., giving the equality 

(Z.n (F) y) = (n* (F)z’y), v F E 10, x E L, !d E M1 

Let 
w*(r) = 3t (F)P w n (r>Q, 5 (r) = f Wo x g (r)Qo 

Then (see I?, 81) 

w*(r) = II (r)G (r) + A (r), A (r) = PO(~) - % (r) 

It is well known [9] that when Conditions 1 -4 are fulfilled the condition of total sweep 

Z (r) + g (r)Q, = f (W,, r E 10 (1.4) 

is sufficient for the global [4] optimality of time T (z) < To, constructed in [S]. 
C o n d i t i o n 5. There exist a Y -dimensional linear subspace Ma C R, 

a linear homeomorphism B : M3 + Ml and a function k (r) analytic in r E (- 
00, + 00)) such that the triple x = {f (r), g (r), k (r)} is linearly independent 
on I, and such that 

rr (t)w = k (t) l-I (t)Bw, V t E I,, w E MS 

2. Theorem 1. Let Conditions l-5 be fulfilled for problem (1.1). Then 
the total sweep condition is a necessary condition for the global optimality of time 

T (2) < To. 
The proof of Theorem 1 is carried out in several stages and is based on Theorem 2 

in PI. 

3, We set 

P (99 4)) = (cp*P (cp) - P (W, 4 (cp, 9) = (cp.q (cp) - Q NJ)) 

h i% 9) = 4 (cp, V) / P (9, A-)), a = sup h (cp, $) 

(the sup is taken over all cp, I$ E K1, cp # 9). In PI it was shown that a point 
q+, and a local coordinate system S = (ss, . - -9 $) in its neighborhood O,, C 

K1 with 0 at point 
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cp = cp (2) = cp (s2, * . - , sV), cp E a$07 cp (0) = ‘PO (3.1) 

Qss(‘p (0)) = Vaa(cp (0)) 

qij(‘p(s)) = (@)- aqtjt3)), &(‘p(S)) = (qj (.z)- a*); 
cpi (S) = y ) 

i ,  j  := 2 
7 - * * , V. 

Also in 181 it was proved that the total sweep (1.4) obtains if and only if 

m (r) > 1, m (r) = f (r) / (ag (r9), r E 1, 

Assumption 1. Thereexist O<z<z,<T,, suchthat n(r)> 1, 
r E (0, ~1 , and m (r) < 1, r E (z, ~~1. 

Note 1. Because m (r) is analytic we can find rz E (t, ri), such that 
m’(r) < 0, r E r = (z, z,J. 

It will be shown in Paragraphs 4 -6 that when Assumption 1 and the hypotheses of 

Theorem 1 are fulfilled we can find a point z,, in space R , for which the time 

T (se) < To is not optimal. 

4. L e m m a 1. Let f3 E (r, r,). 

Q, e + “0 E I? , 
Then for any sufficiently small Z, E (0, 

the determinant A = AI@ + z,) # 0 (here Al(t) is the 
Wronskian for the system of functions f (t), g (t) and k (t)) and the function 

R (t) = f (t + r,,> 6 (0 + T,,) - f @+ -r,) g (t t- rto) 

satisfies the following relations: 

R (t> > 0, t E IO, e), .R (e) = 0, --R’(8) = N > 0 
(4.1) 

By virtue of the analyticity of the functions occurring in triple x , the first part 
of the lemma follows [lo] from the linear independence of these functions. The second 
part follows from Assumption 1, Note 1 and the representation 

R (r) = ag (0 + r& (t -t r,)(m (t + ro) - m (0 -t ro)) 

C o r o 1 1 a r y 1. For any sufficiently small r. > 0 there exist analytic fun- 
ctions hi (t), h,(t) and H (t) -= ha(t) each being a linear combinationof functions 
f (t + ro), g (t + z,) and k (t + z,,), satisfying the conditions 

d’hi (e) I dt’ =: ( ;‘, j+i_l (4.2) i i 1 ; ~ _ j = 0, 1, 2; i = 1, 2, 3 

To verify the corollary it is enough to note that by virtue of Lemma 1 we have a 
linear system with determinant A # 0 for finding the coefficients of each linear 
combination. 
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Everywhere below we frx 8 E (t, r,) and the number Z, >> 0 so small that 
the conclusion of Lemma 1 is satisfied. We set 

L (t> = IJ (t + TO), D (4 cp) = CL-’ (t))*(p / I CL-Yt))*cp I 
M (t, cp) = L-‘(t)W (t, D (t, cp)), C (t)z = L-‘(t)n (t)z 

Vt E [O, e1 = II, ‘PEEKI, ZER 

Here L-‘(t) : L + ICI, is the operator inverse to L (t) , the sign * denotes 
passage to the adjoint operator; as is well known, (L-l(t))* = (L*(t))-“. Opera- 
tor L (t) is nonsingular for each t E 11 ; therefore, operator L*(t) is nonsingular 
too and the family of surfaces M (t, K,), t GE II , is locally convex[5]. In connec- 
tion with this there exists cs > 0 such that (see Lemma 2 in [51) 

We remark that the representation for M (t, cp) has been chosen so that the vector 
q is the outward normal to surface M (t, K,) at point M (t, rp). 

N o t e 2. Since 

($*W (t, 9) - a-c (t)z) = (L*(t)$L-‘@)W (t, q) - C (th) = 

I (t, cp)(cp*M (t, cp) - C (t) 4, 

cp = L*(t)+ / 1 L*(t)q 1 E K1, I (t, ‘P) = I (L-l @)>*cp 1 -‘; 

Vzl,czK,z~R, tEII 

function h (z, t) has the same sign and the same zeros as the function 

n (z, t> =Qgg (cp*M (t, cp) - c (t) z) (4.3) 

We denote & (z, t) E L*(t)$ (z, t) / 1 L*(t)* (z, t) 1 (vector $ (z, t) was in- 
troduced in [4])(+). Then, if cp (z, t) is the vector giving the minimum in (4.3) and 

if h (z, t) = 0, then cp (z, t) = $* (z, t). 
N o t e 3. Let ‘p,, = cp (0) be the vector from (3.1). By virtue of Corollary 

1 and Conditions 4 and 5, a vector 50 E R exists such that 

SO that, with due regard to (4.2), M (t, 91) - C (r)zo = e (t), I E ct> 1 G ‘O* te 
- ty, 0 < t < 8, where co* > 0 is some fixed constant. For any real a, b 

and c a vector ~*(a, b, c) E R exists yielding the equality 
.~ 
‘1 Editor’s Note. In the English edition this vector is introduced in Lemma 1 on p. 193, 

PMM Vol. 37, No. 2, 1973. 
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cPr = 0% v,) EKI, a@, cp) = , :Y11:j),9, ’ ‘p cz KI, r c? 1, 

Xr = $qJ9 up, ul(ON), $0 = D (0, cpI), N(r) 3 II* (r) (L* (r))-1 

Here XI is a nonzero vector orthogonal to 91 (by expanding, if necessary, the local 
coordinates we can assume that f xl 1 = 1). 

Let us clarify Note 3, The right hand side of each of the equalities (4.4) and 
(4.5) has the form 

f (t + zo)no + g 0 + %JAUo 4 k (t + To)BWo, 

%I = MI, uo CSZ M2, U’o E 11/13 

Therefore, it is sufficient to take the vector z = e7ec (no + u. j- wo) in the 
left hand side. Notice also that the mapping N(F) cp is analytic in r +SZ (0, Cl], 
cp E XI, so that we can find ca > 0 such that 

I N OP - N (e)q 1 < C#- F), I^ f?% IT, 01, Cp E KY. (4.6) 

We set z (a, b, c) = z. + z*(rr, b, c); 6 (t) = 8 - t. We have 

n: 69~ (a, b, c) = W (‘A qo), 9 (2 (a, b, c), 0) = 90 
(4.7) 

5. By 0 < %< 0, < * . . < %S < 8 we denote all the zeros of function 
H (8) in the half-open intervaf [O, 0) and by 8, > % , a fixed number 8, E 
(0,, 0) so close to 6 that 

fqt)<4H(t)\<402(t), 1< a,<2 \ ive(t) 

s~E(t)f~c*(e(t))i~~\<c,/16, VtEzI= El,, O)C(2, 0) 

(5.11 

We set 

E = ,,mx_,(] C (t) 20 1 + 1 M (4 ‘p) I>, y =&f, R @) > o (5.2) 

1, * * 

as = 2Y-l(E + 2*E2N2(c,Y2)-’ + 4c,), 0, = 8 - 60 

60 
= min (Q - e,, Ys2-7~4-3, (~~~~~1~‘a, ~~~~4-~~~N-3~ 

al = 2ao(N + Y) + (32~Ql’)~(c,Y~)-~ + 4% 

L e m ma 2. For any T E I0 = (6,, 0) we can find numbers a = a (T) 
- uo, b = b (T), c = c (T) s 4E (0 - T)-2 and a nonempty set 
zose closure is contained in interval (T, e), 

52 (T) 
such that: 

a) h (z (a, b, c), t) < 0, t E [O, 2’1 = X; 3. (2 (a, b, 4, t) < 0, t & 

[T, 01; 
b) if h (z (a, b, c), t) = 0 and t C? [O, e), then t E Q (T), and vice 

versa: 
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=) 1 aR (t) + bH (t) 1 < a1(0 - T)‘/a; 1 cH (t) 1 6 4E, t E [T, 01. 
P r 0 0 f. We set 

aR (r) b*=b*(T)=- H- 
64EaH (r) 

~6 (T) 
- 4~2 (6 (r))“‘, r = 6 - 4N @iT))” > T (5.3) 

T+ = max {(O + r) / 2, 3 - a,N (2 1 b* 1 + ql} (5.4) 

For any 6 E [b*, 0] we denote the vector z (a, b, c), by z (z) , where a E a (T) 
and c E c (T) are specified by Lemma 2. Then 

h (z (b), t) < 0, t E X, 6 E [b*, 01 (5.5) 

Indeed, using the orthogonality of ‘pr and x1 and relations (4.5) and (5.2), we 
have (a (t) - sign H (t)) 

n (2 @), t) 6 (a (t) x1-M (t, o (t) Xl) - c (t) 2 (6) = (o (0 X1-M 09 o(t)x,)- 

c (r) 20) - C 1 H (t) 1 G E - 4E 1 H (t) 1 (8 - Tra < 0 

for those t cz X for which 4 I H (t) I > (0 - Tlau By virtue of (5.1) we have the 
inclusion t E [O, O,] for those t E X for which 4 I If (t) I < (6 - T)a . So 
that, using (5.1) - (5.3) and the inequality 8 - T < 1, we obtain, as in [8], 

n (2 (%, t) < (cpl * 44 (tv cpl) - C (t) zo) - (aR (t) + bfi (t)) d E - 
a,Y + 1 b* I O* (T) / 4 < 0 

Inequality (5.5) has been proved (see Note 2). 
Let us show that 

li. (Z (b), t)< 0, t E IT*, e], t # 8, b E [by 0] (5.6) 

Indeed, n (z (6, t) < I e (t) I - aoR (t) + I b* I H 0) < 0, t E Ii”*, 0). Let us prove 
the inequality 

J. (2 (b*), r) > 0 (5.7) 

We set n* = n (z (b*), r); I, = aR (r) + b* H (r). By virtue of (5.1) -( 5.3) 

cg > cB + I+ = c2 - 64E2Ha(r) W4(T) c;l - 4c,@(r) H (r) > Vpcp (5.8) 

Therefore, for the quantity n* = (cp*M (r, cp) - M (r, cpl) + e (r) - I,cpI - cH (r)XJ, 
where ‘p = ‘p (z (a*), r), we have the estimate 

n*> ~.,,(q.cp - qI)- S-%(e - rf"- (ashy + cff(r)xd> 

c2- 8-k2(e (r)flt- [(~a + Ma + caHa (r)l 

Hence from (5.8) we obtain 

n* > - I, - 8-1~s (0 (r))“) - caH2 (r) cil > 0 

By virtue of Note 2, inequality (5.7) is proved. 
Finally, let US show that 

h (z (O),t) 3 h (z (a, 0, 4, t) < 0, t E 10, 0) 
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In accord with(5.5) it suffices to verify this only for t E [T, 0) , For such t we 
have 

n (2 (O),Q < (q1. M (& w) - c (0 zo - aoR (t) cpl) d I E (4 I - ao R Cd <O 

as required. 

Let us complete the proof of Lemma 2. Let b (T) be the least upper bound of the 
set of all 5 E [b*, 01 for which the function h (Z cb), t) vanishes at least at one 
point of the interval t E (T, T*) . Then relations a) and b) of Lemma 2 are ful- 
filled, while estimate c) follows from (5.1) - (5.3) 

I a (T) R (t) + b (T) H (4 I < a,R (t) + I b*H (4 I < aI (0 - T)*” 

t cz IT, 0) 

6. Using Assumption 1 we complete the proof of Theorem 1. Let Ti + 8 - 0, 
i-too. By zi we denote the point z(a(TJ, b(T,), c (TJ)(see Lemma 2), by 
Zi(t) and Ci(t) the functions u (Ti)R (t) $ 6 (T,)H (t) and c (T&Y (t) , by 
Qi the set Q (Ti). If t E Qi , we denote the vector r (t, 9 (zi, t)) by 
cp1t * By virtue of Note 2, when t E g& we have 

M,(t) 3 M (t, U (t, Cpit)) = c (tki = M (t, w (e7 CPO)) + (6.1) 

li(t)Tl + ci(t)X1 - e (t> 

Multiplying (6.1) scalarly by ‘pl and using the local convexity of M (t, cp), we 

obtain) 

0 < Cz(Cpl’ Cpl - 0 (t, Cpit)) < (VI* M tt, Cpl) - Mitt>> = (6.2) 

-ii(t) + ((PI’&(t)) = C2k*“(t) 

Having made use of the inequality 1 u 1 u I-’ - b 1 b I-’ 1 !a < J a - b 1” ~(1 a 1 

I b I)-‘, when t E Qi we have (by virtue of (6.2), (4.6), (5.1) and estimate c) 
in Lemma 2) 

1 ‘PO - Tit I2 \< (1 N (e)cPl I I N Ct) o Ct9 ‘Pit) I)-’ I, N (ehl - 
(6.3) 

N @>rpl + N W(cpl - 0 (k cpid) I” i N12[C8 (G + 

2iV&i(t)12 < {Nl(C, + NO(~UI I C2 + j))}“(e - Ti)Z” 

iv1 = sup [/ N-l(r) 11, t E IO; No = sup II N (t) 11, t E I0 

Here 11 l 11 denotes the norms of the corresponding linear operators. Therefore, for 

all sufficiently large i (for all i = 1, 2, . . . ) if we discard a finite number of 
terms) 

‘pi* = cp (GO E QW N (9 0 (t9 ‘pit) / I N 63 0 (t, ‘pit) i = r~ h) E o,, 

where oil and Sit are the local coordinates of the corresponding vectors. By 
virtue of (6.3) a sequence Ei -+ + 0, i + 00, exists such that for any i and all 

t E Qi 
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(6.4) 

From the Taylor expansion with a remainder term in Lagrange form follows 

Here co is the common constant for all r E [e,, 01 and all cp (,?) E O,,. From 
( 6.1) and (6.5) follows 

MultiPlYing (6.6) scalarly by i?o (0, cp (0)) / ask, we obtain 

k, j = 2,. . . , Y 

Solving the equation system(6.7) relative to Sit*, m = 2, . . .,V (the quadratic 
form with matrix (6.8) is positive definite, so that the matrix ~~~(~) inverse to 
matrix Mkj (t) exists and is continuous in t E [e,, el), we have (see (5.1); &sm 

is the Kronecker symbol) 

Grn + Y$” @) = ci (t) (6arn + E** (t)) + en%* (61, t E Qti 
(6.9) 
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M (k, t) = Mk, (e)-M,, (t), a = (c, + 1) (1 + 
fE[&, e] ,,$s ’ Bmk @) 1) 

sup 

at* = C (4E)-l(e - Ti)‘/l 3 0, i + 00 

From relations (6.9) it follows (cf. [S]) that for all sufficiently large i 

Sit 
m 

= Ci(t)(S,” i- ai”(t t E Q;21y m = 2, . * *, 

] ai” 1 < 6i + 6i” + 27~‘Cc*&t + 0, i + 00 

(6.10) 

For the determination of the local coordinates 

(Pit = N (t>a (O, Cp @it)) iIN 

Cp Ftt> + ai (t), i E Qi 

where, as in (6.3), 

uit m we have the relation 

(Qo (% cp (%)) I = (6.11) 

I ai 0) I < NIC3@ - t) \< Ci(t)(NIC3E_l)(e - T*)“(e - t)-’ 

By virtue of (5.4) and (5.6) we have 

8 - t > 8 - Ti’ = min (0 - rf, UON (2 1 bi* 1 i- Cz)-l) 

Taking into account the inequality 

1 bi* 1 < (0 - ri)-’ (8a,,N + 46E2N3 + c,) 

following from (5.3), expanding (6.11) by Taylor’s formula and arguing analogously 
to (6.6) -( 6. lo), we obtain 

oit m = Ci(t)(6gm + fii”(t)), t E Qip ?TZ = 27 * . *) v (6.12) 

I Bim (t> I < Pi * 0, i + 00 

where all the fii depend neither on m, nor on r E Szi. 
Let us compute (cf. Sect. 2 in [Sl) the quantity pi(t) = p (t, 21, (zi, t), 8, 4 (q, 

0)). By virtue of (1.3), (6. l), (4.7) and Note 2, for any t E Sli we have 

rli(t) = Pi(t) I ni*(t>+ CZir t> 1 = f (t>(Ttt’P (Cpit) - P (%)I - 

g Ct>(Tit*Cl (Tit) - 4 (CPO)) 

Expa.nding the expression within the parentheses by Taylor’s formula, we obtain 

Ti w = $f P) 2 P,Jf (cpo) (Jitrn%tk - 
m, k-2 

+ g (L) 2 Ymk (%> (Jit%tk + 01 (I St 1% t C-E Qi 
m, k=2 

where @(I if 1”) ! 1 3 1” * 0, 1 5 1 * 0 , uniformly in t E [O,, 01. Substituting 

the values for the local coordinates from (6.12). we have ( see (3. l), inclusion t E 
[e,, ei and Note 1) 
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where {see (6.12)) g* = mintEIe+,O]g(t)>O and}a(i, t>j+o, i+-=% 
uniformly in t E &II. Therefore, pf (t) ( 0 for any t E 8f for all sufficie- 
ntly large i . By virtue of assertions a) and b) in Lemma 2 this signifies that all 
the hypotheses of Theorem 2 in ES] have been fulfilled for point zi . Theorem I 
is proved in Assumption 1 is fulfilled. 

7. Assumption 2. Thereexists 0 ( zI c To such that m (d < 1 
for 0 < r < 71. 

To carry out the proof of Theorem 1 under the conditions of A~um~ti~ 2 it is 
sufficient to set z = 0, to choose $ E (z, ~1) such that m’(r) = (f (r) / (ccg 

(r)))’ # 0 for ? E r’ = (z, z,] (this is possible because the functions f (r) and g (r.) 
expand into power series in parameter r in a neighborhood of T = 0 , to choose 
0 E r and z. > 0 so as to satisfy the conclusion of Corollary 1 and the relations 

(4.2) and also such that the function 

R(t) = (f (t 4 *d.o)g (0 + %) - f (@ + To)!? (t -!- G))Q 

0 = sign m’ (s), s E F 

satisfies (4. I), and to repeat verbatim the arguments in Sections 4 -6 np to formula 
( 6.13). 

8. We now present an example showing that condition A in [2] in the general 
case is not a necessary condition for the globa optirnality of the upper layer time 

dzl / dt = zp - u, d% / dt = v; 1 u I< 1, I v I< i (8.1) 

where 3, zs, u and v are two -dimensional vectors. The terminal set M is the sub- 
space (2 : z1 = 01. Here fez = zl; W (tl fp) = h (t) rp, h ft) = t - t* I2, 0 < t < 2. 
The time T (z) is the smallest positive root of the equation F ft, z) = - 1 z1 -t- t% f* 
c (t - t$ / 2)s = 0. If T (2) < 1 * the optimality of T (2) follows from (2). Let 

us show that time T (z) ES (I, 2) also is opti ma1 although condition A may not hold 

on the whole interval [0,2). 
We suggest that for escape starting from point ~0, T (4 = To E (W), we set 

1 (s) = (To - s)% (3) + (4 - (To - -~)-~)qo, 0 f J f Ta - 1 

v’ (8) = u (4, O,< To -s<l 

where qpo = 9, (zo) is given by the equality (cf. [43) h (To) ‘po = zlo -I- To% . Then 

for the motion z (s), 0 < s < To, z (0) = zg , we have 
S 

F (T, - s, z(s)} = - z~o-+szf&+ (s-r)r(r)dr_Cu(r)dr+(T~-~)~~ 
s 
0 b 

8 

(TO_ ,)‘r;(r)dra+ha(T,-ss)=~~~T,-s) - To--s- \ I I( (To- s)* 12 
2 ‘90 =o ) I i% 
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for all s E [0, T,-- I]. Let us show that T (z (s)) E T, - s is fulfilled for all such 
s . We proceed by contradiction. Let 0 < 2’ (z (s)) < T, - s . By virtue of the 

definition of To we have 0 < k = 8F (T,, zO) / at , and, if k = 0 , then n = iiP 

F (T,, z,,) / at2 f O.Using the inequality k _>- 0 , by direct calculations we obtain 

aF (To ; sf z fs)) > (To -- s) (2 - To + s) (s- (To. cc (7) dr)) > 0 

b 
where equality to zero is possible only if k = 0 and u (r) E ~0 almost everywhere 
on [0, 01. But in the latter case 

av (To - s, z (s)) 
dL2 =n+s(2+s--To)<0 

From what has been said it follows that the function p (t) = F (t, z (s)) has at least 
three zeros ( with regard to their multiplicities) on the interval (0, TO - 4 if k # 0 
and four zeros if k = 0. In the latter case we obtain a contradiction that,sincep(O) 
< Oandp (- 00) > O,afourth-degree polynomial has five roots. However, if k # 0, then 
p (t) > 0 for all t > T, - s sufficiently close to TO - s; P (2) 6 U, which yields 

four roots on (T, - s, 21. As before, we discover five roots on the negative semiaxis. 

A contradiction. 

Now let T (z (so)) = 0, so E (0, TO- 11. Without loss of generality we can take 

it that so is the smallest one of such instants. By what has been proved, T (z (s)) E 

To --s,O <‘<So, SO that F (0, z (SO)) = 0; F (To - 4, Z (so)) = 0; F (t, z (SO)) d 0, 
I) < t < To - so. Smce z1 (so) = 0, F (t, z (so)) = ta (- 1 z, (so) la + (1 - t / 2)2). 

. 
Hence 

1 z, (so) 1” = (1 - (To - so)/2)2 
F (t, z (so)) = V,t2 (T, - so - t) (2 - t + 2 - (To - so)) > 0 

O<t<T,,--so 

A contradiction. The inequality T (z. (s)) > TO - s, 0 < To - s < 1 , follows from 

PI. 
Now let 6 > 0. Having chosen e > 0 sufficiently small and setting u (s) 5 ‘~0, 

0 < 6< e; v (6) G F (s - a), s > e , we guarantee avoidance of contact during time 

To - 6 (see [2] for the proof). 

9. A large class of pursuit problems satisfying Conditions 1 -5 of the present paper 
(remember that Conditions l-3 are taken from [31) have been presented in Sect. 5 of 
[9]. Thus, for this class we have obtained a necessary and sufficient condition for the 

global optimality of first absorption time. 

The author thanks N. N. Krasovskii and E. F. Mishchenko for attention. 
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